Improving thermal power measurements of large radioactive waste packages before repository in burial sites

B. Hay

S. Plumeri, P. Sollet, J. Bertrand, J. Hameury, O. Beaumont, G. Failleau and R. Razouk
- **Nuclear energy in France**
 - 58 nuclear reactors providing 77% of the electricity
 - 3 main “high level and long lived waste” generators (EDF, AREVA and CEA) representing 92% of the total radioactive waste produced
 - Over 1,100 small generators (hospitals, universities, industry…)
 - ≈ 2 kg of radioactive waste produced annually per inhabitant
- Nuclear waste management in France
 - Andra: National Radioactive Waste Management Agency
 - Collect radioactive elements and assess nuclear waste
 - Manage and monitor the storage for all the nuclear waste
 - Classification of French radioactive waste

Classification of French radioactive waste

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Very short-lived Half-life < 100 days</th>
<th>Short-lived Half-life ≤ 31 years</th>
<th>Long-lived Half-life > 31 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low level</td>
<td>Stored to allow radioactive decay on the production site then disposed of adopting conventional solutions</td>
<td>Surface disposal facility (Very-low-level radioactive waste disposal facility in the Aube district)</td>
<td>Shallow disposal facility (studied in accordance with the Act of 28 June 2006)</td>
</tr>
<tr>
<td>Low level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High level</td>
<td></td>
<td></td>
<td>Reversible deep geological disposal facility (studied in accordance with the Act of 28 June 2006)</td>
</tr>
</tbody>
</table>
Nuclear waste management in France

- Highly radioactive long-lived (HLW) and intermediate-level long-lived (ILW-LL) waste
 - French Parliament chose in 2006 deep disposal for ensuring the long-term safety of radwaste
 - Cigéo geological disposal facility will serve as a repository for HLW and ILW-LL waste in 2025
 - Wastes will be buried some 500 meters below ground in an impermeable argillaceous rock
HLW and ILW-LL quality control

- **Inspection on radwaste package before storage in Cigéo (radioactivity, thermal power...)**
 - Safety of radwaste repository underground facility depends on waste thermal power
 - *Avoid temperature above 100 °C in geological medium to maintain argillite properties*

- **Acceptance criteria for repository**
 - Intermediate-level long-lived waste (ILW-LL) : Thermal power from 1 W to 50 W per package
 - Highly radioactive long-lived (HLW) : Thermal power up to 500 W per package

<table>
<thead>
<tr>
<th>HLW</th>
<th>ILW-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>175 l</td>
<td>2 m³</td>
</tr>
<tr>
<td>h = 1.015 m</td>
<td>4500 kg to 6500 kg</td>
</tr>
<tr>
<td>φ = 0.498 m</td>
<td>h = 1.300 m</td>
</tr>
<tr>
<td>300 kg to 450 kg</td>
<td>φ = 1.400 m</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Concrete</td>
</tr>
</tbody>
</table>

⇒ Thermal power should be known with an uncertainty better than 5 %
General background: Project “MetroDecom”

- Thermal power measurement of radioactive waste packages - State of the art
 - Evaluation by applying non-destructive radioassay methods
 - Calculation of the thermal power of HLW and ILW-LL packages from their radioactive spectra
 - Methods sensitive to attenuation and heterogeneity problems due to matrix effects
 - Thermal characterization by direct measurement methods (calorimetry)
 - Some measurements are already performed using commercial calorimeters (Setaram...)
 - Optimized for low thermal power (less than 1 W)
 - Not designed for large samples
 - Uncertainties of measurements are not known

Necessity to improve the metrology of thermal power measurements by calorimetry for this type of applications
« **MetroDecom** » **Project**

European joint research project aiming to solve metrological issues related to the decommissioning of nuclear sites

Develop methods and facilities traceable to SI for:

- Characterisation and selection of radioactive wastes coming from decommissioning process of nuclear facilities
- Monitoring of radioactive waste repositories

Partners (14)

<table>
<thead>
<tr>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMI</td>
</tr>
<tr>
<td>LNE</td>
</tr>
<tr>
<td>ANDRA</td>
</tr>
<tr>
<td>EDF</td>
</tr>
<tr>
<td>STUK</td>
</tr>
<tr>
<td>ENEA</td>
</tr>
<tr>
<td>IFIN-HH</td>
</tr>
<tr>
<td>NPL</td>
</tr>
<tr>
<td>PTB</td>
</tr>
<tr>
<td>SCK·CEN</td>
</tr>
<tr>
<td>CEA</td>
</tr>
<tr>
<td>MIKES</td>
</tr>
<tr>
<td>ENVINET a.s.</td>
</tr>
<tr>
<td>JRC</td>
</tr>
</tbody>
</table>

ECTP 2014
Porto, 31 August - 04 September 2014
MetroDecom Project

- **Structure of the project**
 - WP1: Characterisation of materials present on decommissioning sites
 - WP2: Measurement facility for waste segregation
 - WP3: Implementation of free release measurement facility on decommissioning site
 - WP4: Radioactive waste repositories monitoring
 - WP5: Measurement facility for waste segregation
 - WP6: Creating impact
 - WP7: Management and coordination

Scientific and technical objectives of the task 4.5

- Design a calorimeter for the measurement of thermal power of nuclear waste packages
 - *Method for on-site measurements traceable to SI*
 - *Calorimetric method for real size packages*
 - *Thermal power range: 1 W to 500 W*
 - *Uncertainty of measurements: < 5%*
First calorimetric measurements (1780) \[1\]

- Invention of an isothermal calorimeter
 - Measurement of the quantity of melted ice
 - Measurements of specific heat, enthalpy of fusion and of reaction
 - Study of the heat produced by the respiration of a live guinea pig
 - Energy determined by comparison with the quantity needed to lower the temperature of one pound of water (489.5 g) from 80 to 0 degree (Réaumur temperature scale)
 - Accuracy of heat capacity measurements estimated to 1/60\(^{th}\) (1.7 %)

\[1\] A.L. de Lavoisier et P.S. de Laplace « Mémoire sur la chaleur » (1780)
- Reference calorimeter for gas calorific value measurements
 - Measurement of GCV by isoberibolic calorimetry
 - Determination of C_{cal} for each combustion ⇒ Calibration by electrical substitution

$$GCV = \frac{C_{cal} \cdot \Delta T_{ad} + K}{m_{gas}}$$

- Thermistor
- Burned gases
- Burner
- Water
- Heating wire
- Isothermal jacket at 25 °C
- $O_2 + Ar$
- Gas

- LNE mean value = 55518 J.g⁻¹
- Stand. dev. = 0.03 %
- ISO 6976 value = 55516 J.g⁻¹
- U (k=2) = 0.09 %
- Calorimeter for enthalpy of fusion measurement up to 1000 °C
 - Measurement directly traceable to SI with $U(k=2) < 0.5\%$
 - Calibration and ΔH_{fus} meas. in the same run ⇒ Conservation of the exp. conditions

- Application to ΔH_f measurements of In, Sn and Ag

<table>
<thead>
<tr>
<th>ΔH_f (J·g$^{-1}$)</th>
<th>NIST</th>
<th>PTB</th>
<th>LNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indium</td>
<td>28.51 ± 0.19 (0.7 %)</td>
<td>28.64 ± 0.11 (0.4 %)</td>
<td>28.64 ± 0.11 (0.4 %)</td>
</tr>
<tr>
<td>Tin</td>
<td>60.22 ± 0.19 (0.3 %)</td>
<td>60.24 ± 0.16 (0.3 %)</td>
<td>60.22 ± 0.22 (0.4 %)</td>
</tr>
</tbody>
</table>

$\text{Sens (} \mu \text{V} \cdot \text{W}^{-1}) = \frac{A_c (\mu \text{V} \cdot \text{s})}{Q (\text{J})}$

$Q_f (\text{J}) = \frac{A_f (\mu \text{V} \cdot \text{s})}{\text{Sens (} \mu \text{V} \cdot \text{W}^{-1})}$

e^{m}

$\text{Heating rate : } 15 \text{ mK.min}^{-1}$

Calorimeters for the thermal power measurement of real size radwaste packages

- Calorimeters must be “easy to use”, versatile, robust and reproducible
- Heat-flux calorimetry
 - Sensors have to operate in hard radiological environment (gamma dose rate up to 100 Gy/h)
 - Prototype under development
- "Heat balance calorimetry"
 - Measurement of the temperature variation of a fluid circulating around the package
 - Calculation of the thermal power from the increase of air temperature

\[
Q = \dot{m} \cdot C_P \text{air} \cdot (T_3 - T_1) + K \cdot (T_3 - T_{\text{amb}})
\]

\[
T_3 = (T_2 + T_1) / 2
\]

- Assumption of a constant power dissipation of the package during the measurements
Development of a “heat balance calorimeter”

- **Determination of the temperatures \bar{T}_1 and \bar{T}_2**
 - Meas. of the electrical resistance of a Nickel wire ($\phi = 0.05$ mm, $l = 85$ cm) mounted on a grid
 ⇒ Direct determination of the average temperatures \bar{T}_1 and \bar{T}_2
 - Calibration of these “probes” from $20 \degree$C to $80 \degree$C by comparison with a calibrated SPRT
 ⇒ $T = f(R)$ (Sensitivity $\approx 0.17 \, \Omega/\degree$C)
- Development of a “heat balance calorimeter”
 - Versatile prototype ➞ for different sizes of package
 - Calibration of the calorimeter by electrical substitution (between 0 and 200 W)
Development of a “heat balance calorimeter”

- Versatile prototype ➞ for different sizes of package
- Calibration of the calorimeter by electrical substitution (between 0 and 700 W)

\[Q = U_{heat} \cdot I_{heat} = \left(U_{heat} \cdot U_s \right) / R_s \]
First results obtained with the concrete “reference package” (ILW-LL)

- Comparison between thermal power measured by the calorimeter and power released by joule effect by the “reference package”
 - For $Q_{heat} \approx 10 \, \text{W}$ and $\dot{m} = 10 \, \text{kg} \cdot \text{h}^{-1}$

<table>
<thead>
<tr>
<th>U_{heat} (V)</th>
<th>U_s (V)</th>
<th>R_s (Ω)</th>
<th>Q (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3074</td>
<td>0.0800</td>
<td>0.09996</td>
<td>10.6544</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>Q (W)</th>
<th>Rel. Dev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.331</td>
<td>24.222</td>
<td>10.8516</td>
<td>-1.85 %</td>
</tr>
</tbody>
</table>
Summary

- Development of large volume calorimeters for the measurement of thermal power of real size radwaste packages
- Preliminary tests performed with a “reference package” ⇒ First results promising

Next steps

- Qualification and calibration of the “air flow” calorimeter
- Development of a specific “heat-flux” calorimeter (study of the aging of sensors)
- Assessment of the uncertainty associated to thermal power measurements

This work is funded through the European Metrology Research Programme (EMRP) Project ENV54 - MetroDecom. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Thank you for your attention

This work is funded through the European Metrology Research Programme (EMRP) Project ENV54 - MetroDecom. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.